Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Exp Gerontol ; 167: 111927, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35981616

RESUMO

Sarcopenia is a prognostic indicator of negative consequences in older adults, including physical disability, frailty, and mortality. Few studies have investigated the associations between sarcopenia and the gut microbiota. We sought such associations in community-dwelling older adults aged ≥60 years. Sarcopenia was defined as low muscle mass, plus reduced physical performance, and/or low skeletal muscle strength. 16S rRNA next-generation sequencing was used to identify the components of the gut microbiota in fecal samples from 27 older adults with sarcopenia and 33 without sarcopenia. Relationships between sarcopenia and the diversity and composition of the gut microbiota were analyzed. Diversities at the species level were detected between the sarcopenia and control groups (P = 0.049). The abundance of Prevotella and Prevotella copri was significantly lower (P = 0.021 and P = 0.018 respectively) and that of Parabacteroides sp. higher in the sarcopenia than the control group (P = 0.010). Linear discriminant analysis of effect size revealed differences in the microbiota composition between the two groups. Sarcopenia was related with the presence of Anaerotruncus and Phascolarctobacterium sp. and the absence of Prevotella sp. and Prevotella copri. Further research is warranted to clarify whether changes in the gut microbiota cause sarcopenia onset or development.


Assuntos
Microbioma Gastrointestinal , Sarcopenia , Idoso , Microbioma Gastrointestinal/fisiologia , Humanos , Vida Independente , Prevotella , RNA Ribossômico 16S/genética
2.
J Korean Med Sci ; 36(15): e94, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33876584

RESUMO

BACKGROUND: Common bile duct (CBD) stone is one of the most prevalent gastroenterological diseases, but the role played by biliary microbiota in the pathogenesis of CBD stones remains obscure. The aim of this study was to investigate the characteristics of the biliary tract core microbiome and its potential association with the formation of pigment stones. METHODS: Twenty-eight patients with biliary obstruction of various causes were enrolled. Thirteen had new-onset pigment CBD stone. Of the remaining 15, four had benign biliary stricture, four had gallbladder cancer, three had pancreatic cancer, 3 had distal CBD cancer, and one had hepatocellular carcinoma. Endoscopic retrograde cholangiopancreatography was used to collect bile samples for DNA extraction, 16S ribosomal RNA gene sequencing, and bile microbiota composition analysis. RESULTS: Proteobacteria (61.7%), Firmicutes (25.1%), Bacteroidetes (5%), Fusobacteria (4.6%), and Actinobacteria (2.6%) were the most dominant phyla in the bile of the 28 study subjects. A comparison between new-onset choledocholithiasis and other causes of biliary obstruction (controls) showed Enterococcus was found to be significantly abundant in the CBD stone group at the genus level (linear discriminant analysis score = 4.38; P = 0.03). However, no other significant compositional difference was observed. CONCLUSION: This study demonstrates an abundance of microbiota in bile juice and presents a biliary microbiome composition similar to that of duodenum. The study also shows Enterococcus was significantly abundant in the bile juice of patients with a brown pigment stone than in controls, which suggests Enterococcus may play an important role in the development of pigment stones.


Assuntos
Ducto Colédoco/microbiologia , Cálculos Biliares/diagnóstico , Microbiota , Adulto , Idoso , Idoso de 80 Anos ou mais , Colangiopancreatografia Retrógrada Endoscópica , Ducto Colédoco/patologia , Análise Discriminante , Enterococcus/genética , Enterococcus/isolamento & purificação , Feminino , Firmicutes/genética , Firmicutes/isolamento & purificação , Cálculos Biliares/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Proteobactérias/genética , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Adulto Jovem
3.
J Microbiol ; 59(2): 217-227, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33527320

RESUMO

In vitro fecal fermentation is an assay that uses fecal microbes to ferment foods, the results of which can be used to evaluate the potential of prebiotic candidates. To date, there have been various protocols used for in vitro fecal fermentation-based assessments of food substances. In this study, we investigated how personal gut microbiota differences and external factors affect the results of in vitro fecal fermentation assays. We used Cheonggukjang (CGJ), a Korean traditional fermented soybean soup that is acknowledged as healthy functional diet. CGJ was digested in vitro using acids and enzymes, and then fermented with human feces anaerobically. After fecal fermentation, the microbiota was analyzed using MiSeq, and the amount of short chain fatty acids (SCFAs) were measured using GC-MS. Our results suggest that CGJ was effectively metabolized by fecal bacteria to produce SCFAs, and this process resulted in an increase in the abundance of Coprococcus, Ruminococcus, and Bifidobacterium and a reduction in the growth of Sutterella, an opportunistic pathogen. The metabolic activities predicted from the microbiota shifts indicated enhanced metabolism linked to methionine biosynthesis and depleted chondroitin sulfate degradation. Moreover, the amount of SCFAs and microbiota shifts varied depending on personal microbiota differences. Our findings also suggest that in vitro fecal fermentation of CGJ for longer durations may partially affect certain fecal microbes. Overall, the study discusses the usability of in vitro gastrointestinal digestion and fecal fermentation (GIDFF) to imitate the effects of diet-induced microbiome modulation and its impact on the host.


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Fezes/microbiologia , Microbioma Gastrointestinal , Alimentos de Soja/análise , Bactérias/classificação , Bactérias/genética , Digestão , Ácidos Graxos Voláteis/metabolismo , Fermentação , Humanos , Filogenia , Glycine max/metabolismo
4.
Genes (Basel) ; 8(12)2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29182580

RESUMO

Unbalanced dietary habits and gut dysmotility are causative factors in metabolic and functional gut disorders, including obesity, diabetes, and constipation. Reduction in luminal butyrate synthesis is known to be associated with gut dysbioses, and studies have suggested that restoring butyrate formation in the colon may improve gut health. In contrast, shifts in different types of gut microbiota may inhibit luminal butyrate synthesis, requiring different treatments to restore colonic bacterial butyrate synthesis. We investigated the influence of high-fat diets (HFD) and low-fiber diets (LFD), and loperamide (LPM) administration, on key bacteria and genes involved in reduction of butyrate synthesis in mice. MiSeq-based microbiota analysis and HiSeq-based differential gene analysis indicated that different types of bacteria and genes were involved in butyrate metabolism in each treatment. Dietary modulation depleted butyrate kinase and phosphate butyryl transferase by decreasing members of the Bacteroidales and Parabacteroides. The HFD also depleted genes involved in succinate synthesis by decreasing Lactobacillus. The LFD and LPM treatments depleted genes involved in crotonoyl-CoA synthesis by decreasing Roseburia and Oscilllibacter. Taken together, our results suggest that different types of bacteria and genes were involved in gut dysbiosis, and that selected treatments may be needed depending on the cause of gut dysfunction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA